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Abstract

The last 10 years has brought transformative developments in the effective treatment of myasthenia gravis (MG). Beginning
with the randomized trial of thymectomy in myasthenia gravis that demonstrated efficacy of thymectomy in nonthymoma-
tous MG, several new treatment approaches have completed successful clinical trials and regulatory launch. These modali-
ties, including B cell depletion, complement inhibition, and blockade of the neonatal Fc receptor, are now in use, offering
prospects of sustained remission and neuromuscular protection in what is a long-term disease. In this review, we update our
clinico-immunological review of 2016 with these important advances, examine their role in treatment algorithms, and focus
attention on key issues of biomarkers for prognostication and the growing cohort of older patients, both those with long-term
disease, and late-onset MG (‘LOMG’). We close by expressing our four hopes for the next 5-10 years: improvements in
laboratory medicine to facilitate rapid diagnosis, effective strategies for neuromuscular protection, more research into and
better understanding of pathophysiology and treatment response in older individuals, and the potentially transformative role of
therapies aimed at delivering a durable response such as chimeric antigen receptor (CAR) T cells. Our postscript summarizes
some emerging themes in the field of serological and online biomarkers, which may develop greater stature in the next epoch.
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Introduction and consideration of the impact of age, co-morbidities and

long-term immunosuppression on these populations.

In 2016, as the milestone of the randomized trial of thymec-
tomy in generalized myasthenia gravis (gMG) approached,
our review ‘Myasthenia gravis: a clinical-immunological
update’ looked forward to this pivotal trial, and outlined
and forecast other key developments. Since that date, the
treatment landscape in MG has expanded even beyond
anticipation with multiple new immunotherapies arriving
in clinical practice. We continue to see an increase in late-
onset MG (LOMG) and also long-standing disease in people
living with MG for decades, requiring thoughtful practice

< M Isabel Leite
maria.leite @ndcn.ox.ac.uk

Nuffield Department of Clinical Neurosciences, University
of Oxford, Oxford, UK

Department of Neurology, John Radcliffe Hospital, Oxford,
UK

Medical Sciences Division, John Radcliffe Hospital,
University of Oxford, Oxford, UK

Published online: 22 February 2025

In this review, we will focus on ‘five new things’ which,
in our view, constitute the most transformative develop-
ments in the field since our 2016 review, and then express
‘four hopes’ for the future across different domains of MG
in the next 10 years. Our ‘five new things’ include thymec-
tomy, new immunotherapies, recent guidelines, progress
in biomarkers, and the concept of MG ‘age’ and ‘stage’,
and restricting ourselves to acetylcholine receptor (AChR)
antibody-positive and muscle-specific kinase (MuSK) anti-
body-positive patients. We will not focus in depth on ocular
or seronegative MG, recapitulate established treatments, or
touch on less frequently found antibodies.

Five new things
Thymectomy: the MGTX trial comes of age

The rationale for thymectomy in nonthymomatous MG is
to remove the thymus as a key source of autoimmunization

@ Springer
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and autoantibody-secreting cells (ASCs) [1]. Since our ear-
lier review, the randomized trial of thymectomy in myas-
thenia gravis (MGTX) demonstrated the therapeutic benefit
of thymectomy in nonthymomatous MG and reinforced the
thymus’ pivotal role in MG immunopathology [1]. Histo-
logically examined specimens showed thymic follicular
hyperplasia and atrophy, with cortical atrophy more promi-
nent in subjects > 50 years old [1]. The primary outcomes of
the trial were mean quantitative myasthenia gravis (QMG)
score [2] and prednisone requirement over the three-year
study duration. The group randomized to thymectomy
plus prednisone had lower mean QMG scores (5.47 vs
9.34; 4=0.0007) and dose requirements (24 mg vs 48 mg;
p=0.0002) than the non-surgical group: the first study to
validate the benefit of thymectomy in nonthymomatous MG.
The mean reduction of 2.85 points between thymectomized
and non-thymectomized groups exceeded a previously iden-
tified clinically meaningful threshold of 2.3 [3]. Throughout
the initial MGTX study and its smaller two-year extension
[4], the thymectomy plus prednisone group demonstrated
a higher rate of achieving minimal manifestation status
(MMS) (i.e. not experiencing functional limitations) while
having discontinued prednisone treatment [1, 5].

In all cases of thymoma, regardless of MG status, thymec-
tomy is crucial unless contraindicated [6].

MGTX employed an open, transsternal approach and, as
anticipated, the application of minimally invasive thymec-
tomy techniques is now common. For thymectomy, video-
assisted thoracoscopic surgery (VATS) and robot-assisted
thoracoscopic surgery (RATS) are widely utilized [7-9].
These methods are associated with improved peri-operative
measures, including reduced blood loss, reduced pain and
shorter hospital stay compared to traditional open (trans-
sternal) thymectomy [10-12]. In the absence of prospective
studies to guide decision-making, choice of thoracoscopic
technique is currently dictated by regional availability and
surgeons’ preference and experience [12]. There is a paucity
of randomized trials to evaluate surgical techniques and none
have yet been published although a single case—control study
is underway (Andreas Meisel, 2021, Clinicaltrials.gov ID:
NCT04158661).

Ongoing research into histological differences between
patients might advance patient stratification or prognostica-
tion in the future. One digital analysis of thymic samples
found a positive correlation between the number of ectopic
germinal centers and post-operative improvement in nonthy-
momatous MG [13]. However, it is important to recognize
the limitations of conventional imaging to detect thymic
hyperplasia; in a retrospective study of 106 cases from
our center, MRI thorax missed all such cases, whereas the
sensitivity of CT thorax, while better, was still only 28.6%.
Therefore, histological diagnoses should not be conferred on
imaging findings alone. [14]

@ Springer

Around 15% of MG patients lack detectable serum
AChR antibodies. Within this subgroup, immunoreactivity
is directed against proteins such as muscle-specific kinase
(MuSK) or low-density lipoprotein receptor-related protein
4 (LRP4) [15]. There is limited evidence supporting the
efficacy of thymectomy in these patients [16]. Observa-
tional data indicate that thymectomy has a therapeutic ben-
efit in a proportion of juvenile MG patients, but it remains
to be seen whether this is sustained over extended periods
[17, 18]. Finally, in ocular MG (OMG), thymectomy is
only indicated in patients in whom pharmacological agents
fail or are altogether contraindicated [16].

In summary, thymectomy will certainly remain a cor-
nerstone of MG management in patients with AChR anti-
bodies. Advances in surgical techniques, patient stratifi-
cation and disease pathology will continue to influence
patient outcomes. Furthermore, real-world data should
provide insights into the remission rates and risk of thy-
moma recurrence associated with novel minimally inva-
sive techniques. Where possible, advancements should be
bolstered by evidence from prospective studies to bridge
the gaps in current understanding.

The expanding treatment landscape in myasthenia
gravis

Treatment goals in MG can be conceptualized as meeting
three goals at the pathophysiological level: (1) protect-
ing the neuromuscular junction; (2) removing the effec-
tor cell types responsible for producing pathogenic anti-
bodies and/or the antibodies themselves from circulation
(Figs. 1-3); and (3) reducing or even halting the process of
autoimmunization which underlies the autoimmune attack.
At the time of our previous review, most available treat-
ments were accepted through retrospective use and expert
opinion, although they could be broadly categorized as
belonging to the first two of these groups [19]. However,
historically available immunosuppressive options come
with notable side effects (corticosteroids and azathio-
prine), require frequent, inconvenient pulsing (intravenous
immunoglobulin (IVIG) and plasma exchange), and may
be inadequate to control disease in up to 15% of cases
[20, 21].

The advent of thymectomy for AChR-positive MG,
as discussed above, addresses disease cascade at the site
of autoimmunization since thymic germinal centers fos-
ter creation of AChR-antibody producing plasma cells
[23-25]. However, the biggest expansion in disease modi-
fying therapies has taken place in the second category,
with several landmark trials completed and novel agents
available since our previous review.
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Fig.1 Summary of the B cell lineage differentiation and associ-
ated cell-surface phenotypes. Bone marrow emigrant naive antigen-
inexperienced B cells encounter antigen and T cells in a germinal
center. Germinal centers are most commonly located in lymph nodes
and spleen. The T cells express CD40L and secrete IL-2, IL-21 and
TNFa, among other factors which help naive B cells differentiate into
CD27+unswitched (IgD+) and switched (IgG+) memory B cells.
Unswitched memory B cells may also express IgM. These then differ-
entiate into antibody-secreting cells (below the dashed line: plasmab-
lasts, short- and long-lived plasma cells) whose survival is supported
by IL-6, BAFF and APRIL. Short-lived plasma cells may reside in

Protecting the NMJ in AChR-antibody MG

The IgG1 antibodies of AChR-antibody MG trigger com-
plement activation, causing tissue damage at the post-
synaptic membrane of the neuromuscular junction (NMJ)
[26]. Eculizumab, a monoclonal antibody (mAb) which
inhibits the C5 component of the complement cascade,
was under investigation in 2016 and reported on its phase 3
trial, termed REGAIN, in 2017 (Fig. 2) [27]. This enrolled
125 AChR-antibody-positive patients, 62 assigned to Ecu-
lizumab and 63 to placebo. Eligible patients were adults
(18 or older) with refractory disease treated with standard
immunotherapy for at least 12 months without symptom
control. Although the trial did not meet its primary end-
point (overall change from baseline in the MG activities
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tissues including bone marrow. Long-lived plasma cells typically
niche in the bone marrow, but can reside in the central nervous sys-
tem in states of inflammation. Antibodies in blue=1gG, red=1IgD;
yellow =IgM. Figure and caption reproduced with minor alteration
from: Condition-dependent generation of aquaporin-4 antibodies
from circulating B cells in neuromyelitis optica, Wilson et al. [22]
This is an open access article distributed under the terms of the Crea-
tive Commons CC BY license, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work
is properly cited

of daily living (MG-ADL) scale between the two groups),
several secondary endpoints in a range of validated tools
including the myasthenia gravis composite score (MGC),
QMG and MG Quality-of-Life 15 (MG-QoL15) did sug-
gest a beneficial impact [27]. Furthermore, the open-label
extension phase provided evidence of sustained improve-
ment at 130 weeks of Eculizumab, with 88% achieving
Myasthenia Gravis Foundation of America (MGFA) post-
intervention status of ‘ improved’ and 57.3% with ‘mini-
mal manifestation’ [28]. Eculizumab was approved by the
US Food and Drug Administration (FDA) and European
Medicines Agency in 2017 for AChR-positive MG [29,
30] and has since been joined by two further C5 inhibitors
(Fig. 2 and Table 1) [31-35]. Serious infections and death
have been reported with Eculizumab in neuromyelitis

@ Springer
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Fig.2 Advances in treatment in acetylcholine-receptor antibody
(AChR-AD)-positive myasthenia gravis (MG). Panel A depicts a
timeline of new treatments available since 2016. Panel B shows the
role of these new therapeutic approaches in the pathophysiological
cascade of AChR-Ab MG, with the three main mechanisms (com-
plement activation, cross-linking and internalization, and reduced
receptor clustering) delineated in (ii) and (iv). (i) Thymectomy acts
at the level of the thymus to halt autoimmunization and pathogenic
antibody production. Anti-CD20 therapy acts later in this pathway
to remove antibody-secreting B cells from circulation; (ii) Trials of

optica spectrum disorder patients on long-term immuno-
suppression. This group of patients is particularly vulner-
able due to severity of disease and length and multiple
immunosuppressive agents [36].

Ravulizumab, also a humanized anti-C5 mADb, was the
trial drug in the CHAMPION trial in 2022, which also
enrolled adult patients. Both the MG-ADL and QMG delin-
eated improved outcomes in the Ravulizumab (n=86)
group compared to placebo (n=289) [31]. A key difference
is the extended dosing interval (8 weeks once established,
compared to every 2 weeks for Eculizumab) which may

@ Springer

AChR cross linking

& internalisation Z—
NEﬁEOMUSCULAR JUNCTION

anti-complement agents work by disrupting the complement cascade
activated by IgG1 antibodies, which, left unchecked, leads to tissue
damage at the neuromuscular junction; (iii) the mechanism of FCRN
inhibition is by blocking IgG recycling; pathogenic antibodies cannot
bind to occupied FcRN receptors and are degraded instead of being
returned to the circulation; (iv) at the NMJ, pathogenic antibodies can
act by direct receptor blockade as well as by receptor cross-linking
and internalization. Ab antibody, AChR acetylcholine receptor(s),
APC antigen-presenting cell, FcRN neonatal Fc receptor, MG Myas-
thenia Gravis. Image created with Biorender

be relevant to patient preference factors [64]. A third C5
inhibitor, Zilucoplan, a cyclic peptide, was added in 2023
with the RAISE trial [34]. Similar to the mAbs, scores on
accredited MG rating scales improved with Zilucoplan, and
it has the advantage of being given as a self-administered
subcutaneous injection. The safety profile of these agents
is acceptable, but meningococcal vaccination for protection
against encapsulated organisms is mandatory prior to drug
initiation. Phase III extension and Phase IV trials, as well as
real-world clinical and safety data collection will be required
to determine the long-term safety profile of complement
inhibition in MG.
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B | NORMAL THYMUS IN MUSK MG
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Control ) AChR+ MuSK -

Fig.3 Advances in treatment in muscle-specific kinase antibody
(MuSK-Ab) positive myasthenia gravis (MG). Panel A depicts a
timeline of new treatments available since 2016. Panel B, A—E shows
example of thymic pathology in control (A and E), AChR-Ab (B
and F), seronegative, probably low-affinity AChR by modern test-
ing methods (C and G), and MuSK-Ab (D and H). Immunofluores-
cence staining for CD20-expressing (green) and CD35-expressing
follicular dendritic cells (red) revealed a lack of CD35 cells in con-
trol thymus (E), whereas germinal centers were more extensive in
AChR-Ab (F) than negative H patients. Also, germinal centers were
only found in 4/14 MuSK thymi examined [24]. Therefore, due to
lack of thymic pathology, thymectomy is not indicated in MuSK MG.
Panel C shows the role of new therapeutic approaches in the patho-
physiological cascade of Musk MG. (i) Anti-CD20 therapy removes
some antibody-secreting B cells and their precursors from circula-

Removing culprit antibodies: efficacy in AChR-antibody
and the first licensed agent in MuSK-antibody MG

The neonatal FcRN receptor is critical to the recycling of
circulating IgG antibodies in vivo (Fig. 2 and 3) [65, 66].
Blocking FcRN receptors results in endogenous immuno-
globulins being targeted for lysosomal degradation instead
of recycled, credited with achieving a 70% reduction of total
circulating IgGs comparable to plasma exchange [66]. Two
recently approved therapies make use of this mechanism
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tion; (ii) the mechanism of FcRN inhibition is by blocking IgG recy-
cling; pathogenic antibodies cannot bind to occupied FcRN receptors
and are degraded instead of being returned to the circulation; (iii)
most MuSK antibodies are of the IgG4 sub-class and do not activate
complement. Their mechanism of action is via receptor blockade,
impeding receptor clustering, and alteration of onward phosphoryla-
tion mechanisms. Ab antibody, AChR acetylcholine receptor(s), APC
antigen-presenting cell, FcRN neonatal Fc receptor, MG Myasthenia
Gravis, MuSK muscle-specific kinase. Image created with Biorender.
Panel B reproduced from: Leite MI, Scrobel P, Jones M, et al. (2005).
Fewer thymic changes in MuSK antibody-positive than in MuSK
antibody-negative MG. Ann Neurol 57:444-448. License number
5760141271853. Copyright © 2005 American Neurological Associa-
tion)

for therapeutic gain. Efgartigimod (FDA-approved in 2021)
is an IgG1 Fc fragment dosed as an intravenous infusion,
whose binding affinity to neonatal FCRN receptors exceeds
that of endogenous IgGs and thus prevents their return to
circulation. In the phase 3 ADAPT trial, its use compared
to placebo attained clinically meaningful improvements in
the MG-ADL [45].

By comparison, Rozanolixizumab is a subcutaneous
formulation and targets the FcRN in the form of a human-
ized IgG4 mAb, but with a parallel downstream effect of
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discarding endogenous IgGs from circulation, probably via
the lysosomal pathway [47, 48]. In the pivotal MycarinG
trial, this drug achieved significant improvements compared
to placebo in established outcome MG scales, as well as a
new patient-rated outcome measure, the Myasthenia Gravis
Symptoms PRO [67], introduced to capture disease impacts
more effectively, including recognizing the importance of
fatigue [47]. Total IgG levels in both trials were reduced
by 60-70%, and in both cases antigen-specific antibody
reduction appeared to track total clearance, which was
more tightly seen with Rozanolixizumab treatment [45,
47]. The main side effect of this medication class is head-
ache although infections can also occur and may be serious.
On-therapy live or live attenuated vaccinations are contra-
indicated [45, 47].

Just reported are the phase 3 results of the Batoclimab
trial, a humanized IgG1 antibody to the FcRN, administered
subcutaneously, which studied 132 patients and also found
significant and sustained improvement on the MG-ADL
scale (31.3%, 20/64 randomized to placebo versus 58.2%,
39/67 to Batoclimab in the first cycle of treatment). Frequent
side effects included peripheral edema, and upper and lower
respiratory tract infections [68]. This treatment is not yet
approved by the FDA (Table 1).

Both the approved FcRN-inhibition phase 3 trials
included MuSK-MG patients (Fig. 3 and Table 1) (six in
ADAPT, and 21 in MycarinG) and in 2023 Rozanolixizumab
became the first FDA-licensed MuSK-MG agent in addi-
tion to being approved for AChR-antibody disease [46]. In
fact, MycarinG sub-group analysis suggested MuSK patients
had a higher reduction in MG-ADL (reduction of four to
seven points, compared to around three points, in the differ-
ent dosing groups) scores compared to their AChR counter-
parts (derived from a total of 13 MuSK- and 120 AChR-MG
patients receiving active treatment) [47]. The Batoclimab
cohort included a very small (two in active and three in pla-
cebo group) number of MuSK patients.

Removing effector cell types: early is best?

As amAb to the CD20 marker widely found on B cell popu-
lations (Fig. 1), Rituximab is well established in multiple
autoimmune diseases and could be anticipated to deplete
effector cell types in MG too [52]. Until recently, its use
(often in refractory scenarios) was based on observational
evidence and case series, some summarized in our previ-
ous review, which suggested a promising role particularly
in MuSK-MG [69].

Randomized controlled trial (RCT) evidence became
available in 2022. The Rinomax anti-CD20 trial recruited
new-onset patients, almost all AChR-antibody positive (and
none MuSK-antibody positive). The 25 patients in the active
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arm were more likely to achieve minimal disease manifesta-
tion than 22 individuals in the placebo group [54]. By con-
trast, the BEAT-MG trial, with a similar number of trial
participants (52, all AChR-antibody positive, at 5.5 years
from disease onset at enrolment), found no meaningful effect
in several outcome measures between placebo and treatment
groups [55]. This is despite the fact that the Rituximab dose
in BEAT-MG, at 375 mg/m2 weekly for four weeks, far
exceeded the low dose 500 mg infusion given in the early-
intervention Rinomax [54, 55].

One possible interpretation is that the Rinomax paradigm,
recruiting patients at disease onset, harnessed therapeutic
momentum through early removal of effector cells from the
circulation, before perpetuation of resistant mechanisms
such as complement-mediated NMJ damage and inaugura-
tion of CD20-antibody-producing plasma cells in protec-
tive niches. Although non-significant, the fall in AChR titers
observed in the Rituximab group is in keeping with this
interpretation. This might be a lesser risk in the IgG4 pre-
dominant MuSK-MG, where complement is not activated,
and IgG4-antibody secreting cells including plasmablasts
may be preferentially sensitive to CD20 depletion.

While there have been no RCTs of Rituximab in MuSK-
MG, in 2017, a multicenter blinded prospective review of 55
patients, a large cohort in such a rare disease, found Ritux-
imab-treated patients were significantly more likely to have
a good outcome as assessed by the myasthenia gravis status
and treatment intensity (MGSTI) scale (58% (14/24) vs. 16%
(5/31)) and less likely to require corticosteroid therapy (29%
vs. 74%) and at a lower mean dose (4.5 mg compared to
13 mg daily) [70]. Numerous smaller reports continue to
accrue since our 2016 review, continuing to build a mean-
ingful case for Rituximab in MuSK-MG [71].

Conclusion: an explosion in therapies in MG

Since our 2016 review, the therapeutic landscape in MG
has been considerably enriched, and several late-phase tri-
als are ongoing at the time of writing, including new agents
in the category classes described above, emerging agents in
categories already established in other autoimmune diseases
(e.g. IL6 receptor blockade), and novel approaches includ-
ing CAR T therapy (discussed in Hope 4) [62]. Depletion
of CD19 B cells (Fig. 1) offers potential to target antibody-
secreting plasmablasts and even some long-lived plasma
cells. Table 1 summarizes some important therapies cur-
rently under investigation. Our next section will explore the
clinical role of these new therapies and their integration into
existing guidelines.
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New treatments: integration into real world practice
and updated guidelines

Our 2016 review summarized European and UK best
practice guidelines and advice for expectant mothers [19].
Since then, the considerable expansion of available thera-
pies calls for consideration of how these are integrated
into clinical practice and national/international best prac-
tice guidelines. It is expected that use of new agents will
evolve over time, requiring repeated expert body attention
and assessment of parameters including safety, cost, de-
escalation and combination options.

2020 saw the release of updated International Con-
sensus Guidance, incorporating expert views on thymec-
tomy, Rituximab, and Eculizumab [16]. In summary,
advice was for early consideration of thymectomy in those
aged 18-50 with nonthymomatous AChR-antibody posi-
tive disease, and, reflecting the inclusion of individuals
aged up to 65 in the MGTX study, in all patients with
AChR-positive MG deemed non-responsive to or intol-
erant of initial immunotherapy. Early use of Rituximab

in MuSK-antibody-positive patients and Eculizumab for
severe or refractory AChR-antibody gMG was also recom-
mended. Other complement inhibitors and FcRN inhibitors
were not yet available for discussion. In addition, Japa-
nese guidelines published in 2022, including Eculizumab,
stated this should be considered when more established
modalities of IVIG or plasma exchange are inadequate to
control symptoms. These guidelines also highlighted the
role of thymectomy in AChR-antibody-positive disease
[72].

The above guidelines situate the use of new agents in
refractory disease as do current NHS England recommenda-
tions focusing on Rituximab’s use in resistant disease [53].
However, it is increasingly recognized that early assertive
treatment is best poised to gain symptom control and achieve
the goal of minimal disease manifestation on <5 mg pred-
nisolone a day, as well as limit permanent NMJ damage,
particularly in young patients [72]. Early intervention could
provide tangible benefits and rapid stabilization in severe
disease, a concept we illustrate in Fig. 4, and in support
of which there is some trial evidence. Moreover, the two

Clinical, laboratory (and radiological) diagnosis of AChR-Ab positive gMG (with considerations for MuSK)

Start symptomatic therapy (if response and tolerated)

Thymectomy (thx) if <50 (or <65)

If thymoma (any age) NOTE:
ASAP (2-6 months) IVIG or PLEX to be
used only**:

(NB: no role for thx in MuSK-MG)

L &

If no prompt response or waiting response (thx):

- at the diagnosis if
severe MG (while

consider oral steroid* If MG crises during established waiting first line to be
+/- oral immunosuppression / anti-CD20 chronic therapy without clear effective)
(consider reduced anti-CD20 dosing in elderly patients) trigger:
‘ ; - in MG crisis
- pre-surgery (some)

If no significant response or remission in 10-12 months:
another oral immunosuppressive agent / anti-CD20

max prednisolone 20mg/day, dose reduction

*induction oral immunotherapy:
to zero, max 6 months

! &

If no significant response or remission in 10-12 months
or
If severe side effects to the above 3 different types of
therapies

-

New “target” therapies
e.g. complement inhibitor
(AChR-Ab patients only) or FcRn
inhibitor

** |VIG and PLEX are
not chronic therapies
(used due to lack of
better treatments)
(NHSE advice re IVIG:
only for MG crises and
pre-surgery)

Fig.4 Treatment algorithm for gMG with AChR or MuSK antibod-
ies. After clinical, laboratory (and radiological) diagnosis of gMG,
start symptomatic therapy (pyridostigmine). In AChR-antibody posi-
tive cases under the age of 65, and all MG patients with thymoma,
thymectomy should be considered. Oral steroids (aim for no more
than 20 mg prednisolone/day induction dose), other oral agents (e.g.
azathioprine/mycophenolate  mofetil/ciclosporin/methotrexate), or
anti-CD20 can be started if insufficient response to symptomatic
medications or while waiting for a thymectomy procedure and sub-
sequent response, which may take up to two years for full therapeutic
effect. If severe side effects or an inadequate response to this stepped

approach at 10-12 months, consideration should be given to adding
in a new targeted therapy such as a complement inhibitor (AChR-Ab
patients) or FcRN-inhibition (AChR and MuSK-Ab patients). IVIG
and PLEX are not chronic therapies and their use is advised for res-
cue therapy at disease onset or in MG crisis, and, for some patients
pre-surgically. The updated German guidelines propose a compa-
rable approach [73]. Ab antibody, AChR acetylcholine receptor(s),
FcRN neonatal Fc receptor, gMG (generalized) Myasthenia Gravis,
IVIG intravenous immunoglobulin, MuSK muscle-specific kinase,
NHSE National Health Service England, PLEX plasma exchange, thx
thymectomy
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Rituximab trials described above demonstrate the potential
advantage of early treatment before entrenchment of perma-
nent muscle weakness [54, 55]. In our experience, maximum
therapy requirements are personalized and tailored to fac-
tors including age, occupation, performance status (a meas-
ure of physical functioning), life goals, illness beliefs, and
disease severity. An important demographic group, elderly
patients, are variably represented in the trial landscape: some
(MGTX, Zilucoplan) had an upper age limit (65 and 74,
respectively) [1, 34]; others did not have an upper age limit
but mean ages of patients in their treatment arms reflected
a mainly younger demographic in their 40s or 50s [27, 31,
45, 47]. The Rinomax trial was most inclusive of elderly
patients, with a mean age in the treatment arm of 67.4 years
and a standard deviation of 13.4 years, which represents bet-
ter the current demographics of patients in cohorts of gMG.

In the pivotal trials of complement inhibition [27, 31, 34],
clinical effect, as assessed by the MG-ADL and QMG score,
was apparent within one week with all three approved agents
(Eculizumab, Ravulizumab, and Zilucoplan). Similarly,
FcRN inhibition has been shown to drop total circulating
IgG and antigen-specific IgG within a week of initiation of
therapy [45, 47], depleting circulating antibodies at a simi-
lar rate and proportion to plasma exchange, while remov-
ing some risks specific to plasma exchange such as volume
shifts, line infections and bleeding [65, 66]. This may be
particularly helpful in elderly populations. One aspect of
FcRN and complement inhibition is these are likely to be
long-term modalities as their mechanisms do not address
the cellular root cause [74]. Their role in the hyper-acute set-
ting will remain under exploration; MGFA class I[I-IV (mild
to severe generalized weakness) and stable disease for at
least four weeks was a trial entry criterion [31, 34, 45], with
certain trials (Eculizumab, Rozanolixizumab) additionally
explicitly barring patients in crisis, and Rozanolixizumab
specifying a maximum of class IVa (thus excluding patients
with predominant bulbar/respiratory symptoms) [27, 47].
Also, it is worth noting that in these emerging therapies,
trial protocols allowed concurrent use of existing and rescue
standard therapy.

Two new major European guidelines were recently
issued at time of writing this review. German guidelines
arrived in 2023, focusing on assessment of disease activity
through validated tools, and the use of new agents in very
active or refractory patients [73]. These were followed in
2024 by new Nordic guidelines, and the main novel points
were that Rituximab at single doses not exceeding 500 mg
could be used early in disease instead of steroids and aza-
thioprine, that availability of new complement and FcRN
inhibitors depended on local factors and should be reserved
for difficult-to-treat patients, and the role of thymectomy
was emphasized [75]. The UK ABN guidelines, dating
from 2015, require a refresh [6]. Updated guidelines will
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be valuable, but should be viewed as a framework within
which individualized decisions can be taken, taking into
account patient-level factors, such as disease duration, dis-
ease severity, past and current immunosuppressive medica-
tions, and co-morbidities. Moreover, the increasing preva-
lence of LOMG [76] demands careful thought about steroid
and immunotherapy dosing in the older patient (Fig. 4). As
the number of new therapies rises, close working relation-
ships between general and sub-specialty neurologists will be
critical, with tertiary centers able to advise at all MG stages
and balancing appropriate referral with support to manage
patients locally where possible.

Biomarkers: toward precision treatment in MG

While a number of exploratory biomarkers are under inves-
tigation (Table 2), most remain distant from clinical use.
For example, despite significant research activity and some
emerging profiles (Table 2), circulating miRNAs would still
require multicenter laboratory standardization and studies to
gain credence [77]. The biomarkers most studied and proxi-
mal to clinical utility are the circulating immune cell reper-
toire and the humoral response itself. Indeed, B cell subsets
are routinely measured in clinical practice in conjunction
with Rituximab use [53], and IgG levels and immune cell
characterization are incorporated in recent[34, 45, 47, 54,
55] and in-progress trial designs. Genetic polymorphisms
may predict response to some therapies, for example, frag-
ment ¢ gamma receptor 3A (FCGR3A) polymorphisms are
established as impacting on-Rituximab relapses and a re-
dosing requirement in Korean patients with neuromyelitis
optica spectrum disorder [78]. Similarly, a mis-sense muta-
tion in C5 (c.2654G > A, conferring a p.Arg885His poly-
morphism), was found to abolish Eculizumab binding and
underlie poor response to Eculizumab in Japanese and Chi-
nese patients [79].

Progress and a clearer picture in MuSK-MG

At the time of our earlier review, MuSK antibodies were
already considered to be reflective of disease activity [101].
Antibody titers were positively correlated with disease sever-
ity scales and shown to fall after immunotherapy in individual
patients [101]. Titers tended to decrease with time and some
patients became seronegative [101]. Since then, further reports
have delineated a rise in MuSK-antibodies preceding relapse
[102, 103], but more comprehensive studies would be valuable
[104]. Detailed screening and epitope mapping of anti-MuSK
antibodies has extended understanding by delineating, spe-
cifically, a relationship between antibodies to MuSK’s IgG-
likel domain and disease severity [105]. This speaks to the
underlying pathophysiological mechanisms since this domain
is essential to MuSK’s interaction with LRP4, and downstream
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Table 2 Exploratory biomarkers in MG

Biomarker Potential utility & MG subtype

Summary of findings

miRNAs Diagnosis of OMG vs. gMG
Diagnosis of MuSK +MG [80]

Treatment response in AChR Ab+MG [81-84]

Disease progression and treatment response in LOMG
[85]

Differentiation between OMG and SGMG [86]

Heat shock proteins HSC 71: Disease progression and treatment response in
eMG [87]

HSP90w: Treatment response in thymomatous and non-
thymomatous MG [88]

HSP 70: MG diagnosis [89]

Neurofilament light chain Disease progression in adults 18+ with MG [90]

e Phase 3 trial enrolment (NCT05888558) under way

e Increased serum let-7 miR-let-7a-5p, miR-let-7{-5p,
miR-423-5p and miR-151a-3p levels in MuSK-MG
cohort compared to HCs [80]

o Increased serum miR-150-5p and miR-21-5p titers in
MG compared to HCs

e Decreased serum miR-150-5p titers post-thymectomy,
and decreased serum exosomal miR-150-5p in parallel
with improved clinical status after Rituximab treatment

e Decreased serum miR-150-5p and miR-21-5p titers in
an immunosuppressed MG group compared to non-
immunosuppressed MG group, but no association with
clinical status

e Serum miR-323b-3p, -409-3p, and -485-3p titers signifi-
cantly decreased in immunosuppression non-responsive
versus immunosuppression responsive group, and serum
miR-181d-5p and -340-3p titers significantly increased
in immunosuppression the non-responsive group

e Serum miR-150-5p, miR-21-5p and miR-30e-5p titers
negatively correlated with MGC score after immunosup-
pression

e Serum miR-30e-5p is highly sensitive in differentiating
OMG and secondarily generalized gMG

e Serum anti-heat shock cognate protein 71 antibody
(HSC71 Ab) titers significantly elevated in gMG com-
pared to HCs

e Serum HSC71 Ab titers significantly decreased in paral-
lel with improved clinical status

o In patients refractory to acetylcholinesterase inhibi-
tor treatment, the initiation of tacrolimus therapy was
associated with improved clinical scores and reduced
HSC71 Ab titers

e Serum titers of HSP90u significantly increased in
patients with thymomatous and non-thymomatous MG
compared to healthy controls

o In thymoma patients, high serum HSP90u titer associ-
ated with increased rate of tumor recurrence

e Complete tumor resection correlated with decreased
serum HSP90u titers

e Non-thymomatous MG patients who were thymectomy
non-responsive had significantly increased preoperative
HSP90a serum concentrations compared to thymectomy
responsive patients

e Anti-Heat Shock Protein 70 (Hsp70) antibody titers
increased in MG and Guillain-Barré syndrome com-
pared to HCs and MS patients

e Serum neurofilament light-chain titers elevated in MG
cohort compared to HC

o No statistical association between serum neurofilament
light chain titers and clinical status (QMG and MG-ADL
scores)
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Table 2 (continued)

Biomarker Potential utility & MG subtype

Summary of findings

Gut markers
and possible therapeutic targets [91-95]

Diagnosis and disease progression in all MG subtypes

[96]

Diagnosis of OMG and gMG [97]

Single-fiber EMG

Disease progression in mild AChR+MG [99]

Smartphone data
[100]

Disease susceptibility, comparison to healthy controls,

Treatment response in seronegative OMG [98]

Disease status and exacerbation in adults 18+ with MG

e Several studies depicting altered fecal microbiota,
reduced diversity, and dysbiosis in MG vs. controls.
Specific relationships include putative etiological
roles for Lachnoclostridium and Faecalibacterium and
interventional targets of Bacteroidetes and Desulfovi-
brionaceae

e In one study, serum titers of systemic inflammatory
markers were elevated in MG, correlated to gut dysbio-
sis, and MG patients had increased carriage of certain
species including Streptococcus

o Panel of microbial and metabolic biomarkers identified
from stool samples were capable of discriminating MG
and HCs with 100% accuracy

e Several indexes of microbial diversity negatively corre-
lated different with increased QMG scores when patients
were divided into disease severity groups

o Panel of microbial and metabolic biomarkers identi-
fied from stool samples were capable of discriminating
OMG, gMG and HCs

e Increased orbicularis oculi SFEMG jitter in patients had
a high predictive value for therapeutic response

e Increased jitter and increased blocking were associated
with disease exacerbations

o Pilot study to phenotype MG patients and gather digital

markers of impending exacerbation via smartphone data
collection

Clinical trials taken from ClinialTrials.gov, supplemented by individual references where indicated. Ab antibody, AChR acetylcholine recep-
tor gMG generalized myasthenia gravis, HCs healthy controls, HSC71 heat shock cognate protein 71, HSP 70 heat shock protein 70, HSP90a
heat shock protein 90a, LOMG late-onset myasthenia gravis, MG myasthenia gravis, MG-ADL myasthenia gravis activities of daily living scale,
MGC myasthenia gravis composite scale, miRNA microRNA, MuSK muscle-specific kinase, OMG ocular myasthenia gravis, QMG quantitative

myasthenia gravis score, SGMG secondarily generalized myasthenia gravis

clustering of AChRs [105]. Pathogenic mAbs to the IgG-like
2 domain have also been implicated, in smaller cohorts [106].
Some investigators have found a sub-population of MuSK
antibodies which, contrary to expectations, activate MuSK
phosphorylation and a degree of AChR clustering [107-109].
It may be that these bivalent antibodies are non-pathogenic,
gaining pathogenic potential only after FAB arm exchange, a
property unique to IgG4 sub-class antibodies, and functional
monovalency [108]. While the majority of MuSK-MG anti-
bodies are of the IgG4 sub-class, the role of IgG1-3 subclasses
is beginning to be recognized [110]; comparable to IgG4 enti-
ties, they inhibit AChR clustering, potentially at even greater
potency, but via a different, non-canonical pathway, and may
activate complement [106].

In tandem, intensive work has been undertaken to char-
acterize specific B cell phenotypes and clones which may be
instrumental in, and herald, relapse. This is now supported
by several strands of evidence. Antigen-specific IgG4 B
cell clones, moreover targeting MuSK’s IgG-like 1 domain,
emerged in advance of clinical worsening in MuSK-MG
patients treated with bone marrow transplantation [103].
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Rituximab-resistant CD38+ and CD27+ plasmablasts and
CD20 low B cell clones survive immunotherapy and recon-
stitute proximal to and mediate MuSK-MG relapse [111,
112]. Ultimately, resistant cells could act as both biomarkers
and therapeutic targets for precision-engineered CAR T cells
[63]. Since CD19 is found on a wider phenotype of B cells
(Fig. 1), anti-CD19 therapy, now in use in neuromyelitis
spectrum disorder, may offer the chance to deplete resistant
cells [56].

Strength and diversity in numbers: a complex picture
in AChR-MG

The picture is different with AChRs. Overall evidence at a
cohort level suggests quantitative antibody titers less well
relate to disease activity[104] although recently, it was
shown that intra-individual changes may be of personal dis-
ease-monitoring benefit and merits further study [113]. New
technology is now delineating in more granular detail what
had previously been established of mechanistic heterogene-
ity between and within individuals, and even within the same
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antibody clone, with the mainly IgG1 entities able to activate
complement, internalize AChRs, and cause receptor block-
ade [114]. Moreover, it has been shown that complement
activation is enhanced by multiple antibodies in concert, tar-
geting different AChR epitopes [115]. These observations
highlight why quality, not just quantity, of antibodies matter
in determining pathogenicity, and suggest that polytherapy
could be needed to curtail a variety of pathophysiological
actions at the molecular level. Nevertheless, AChR-Abs were
shown to decrease after Rituximab treatment although levels
did not predict relapse [116]. Also, more recently, the per-
sistence of thymic-derived B cell clones post thymectomy
indicated a poorer response and in some patients paralleled
a persistence of AChR-AD titers [117].

Due to its long-acknowledged role in AChR-MG, interest
has naturally surrounded elements of the complement cas-
cade, and the advent of C5-inhibiting therapies makes this
even more pressing [26]. Cleaved components of the clas-
sical and alternative complement pathways are more abun-
dant in samples from newly diagnosed AChR-MG patients
compared to healthy controls [118]. The components were
not diminished after established, non-complement focused
immunotherapy [118]. While one functional assay of com-
plement did not differ between AChR-MG patients and
controls [119], a novel assay capturing membrane attack
complex (MAC) activity shows promise as a biomarker of
disease activity and response to anti-complement therapy
[120]. Similarly, IL6 is under investigation for biomarker
potential, and blockade of its receptor evaluated in MG in
a phase 3 Satralizumab (IL6 receptor mAb) trial although
at time of writing, this trial had been halted (Table 1). In
a cross-sectional study, IL6 was found to be elevated in
93 AChR-MG patients compared to age-matched disease
controls, and to correlate, albeit weakly, with MGFA status
[121]. The benefits of Tocilizumab, another anti-IL6 recep-
tor mAb, have been reported in case reports and obser-
vational studies [122-125]. Notably, IL6 and the soluble
IL6 receptor are among a detailed biomarker panel trial
announced in another autoimmune disease treated with IL6
receptor inhibition, neuromyelitis optica spectrum disorder
[126].

Don’t forget about T cells

CD4+T cells are critical partners in many B cell pro-
cesses relevant to autoimmunity, including class switching,
somatic hypermutation, and maturation [127]. It should be
remembered the ‘T” in T cells represents the thymus, an
organ critical to their development and education. Popula-
tions of two phenotypes of CD4+T cells, Th¢p o3 (a TNFa
secreting population), and Thgy,, which produce granulo-
cyte—-monocyte colony-stimulating factor (GM-CSF) and are
pro-inflammatory [128], were found to be sequestered in

the thymus and reduced in the peripheral circulation of MG
patients, the latter correlating inversely with disease sever-
ity [129]. Thymectomy appeared to release these cells back
into the peripheral circulation and Thepy,; Was proposed as
a disease biomarker [129].

Another study concluded that the subset of CD4+T cells
consisting of IL17-positive T follicular helper (Th17+)
cells dropped more sensitively than plasmablasts post-
immunotherapy, and that a greater proportion of Th17+ cells
was associated with higher QMG score [130]. This T cell
cytokine, among others including an uplift in GM-CSF,
receives support from the results of other investigators in
MG [131], and could become a marker of MG crisis and
longitudinal disease activity [132].

Conclusion: guidelines and biomarkers react to new
therapies

Guidelines are beginning to incorporate the wealth of new
treatments, and biomarkers could further help refine clini-
cal practice in MG. Response to treatment and biomarkers
differs between AChR- and MuSK-MG, reflecting the dif-
ferent disease mechanisms (Figs. 2 and 3) and IgG sub-class
predominance. Other factors influential to determine clinical
practice include both ‘age’ and ‘stage’ of MG—a concept we
will develop below.

Myasthenia gravis: not just ‘age’ but also ‘stage’

Our prior review outlined the increasing incidence of
LOMG, an epidemiological phenomenon which has con-
tinued to be observed and discussed. In a strictly designed
prospective regional UK epidemiological study covering the
years 2014-2018, incidence of new MG was at its highest
in the > 65s (51.5/1,000,000 for men and 51.3/1,000,000 for
women, compared to 17.6/1,000,000 in the population at
large) [76]. Also, the > 65 age group was the only group
in which incidence rose during the period under investiga-
tion [76]. These findings have been echoed in studies from
Northern Ireland (Fig. 5), [133] Japan [134], and Germany
[135]. Moreover, prevalence doubled in Japan from 2006
to 2017 and in the German study, was the highest in those
aged 80 and above [134, 135]. While LOMG will be cap-
tured within older cohorts, it is also important to remember
middle-aged and above age brackets in prevalence studies
also reflect those with EOMG and longstanding disease,
especially since the advent of intensive care, as a result of
which survival rates of MG have improved [136, 137] and
some, [137, 138] but not all recent studies [135, 139], show
no increased mortality compared to the general population.
There are varying accounts as to whether disease course
and likelihood of remission is less favorable in EOMG or
LOMG, with studies reporting both comparable [140-143]
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Fig.5 Changing onset of

Late-Onset Myasthenia Gravis 60+
(LOMG) and Early-Onset
Myasthenia Gravis (EOMG) in
Northern Ireland from 1990 to
2008. IR is shown in cases per
million person-years, error bars
represent 95% CI. There is an
almost sevenfold increase in IR
of LOMG, and although there is
a two-fold increase in absolute
EOMG IR, the CIs overlap.
Reproduced with permission
from: AS Carr. Actual world
epidemiology of Myasthenia
Gravis (Chapter 2). In Mineo
TC, editor. Novel Challenges
in Myasthenia Gravis. Nova
Science Publishers, Inc.: 2015.
CI confidence interval, IR
incidence rate

=
[=]
3
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and worse [144-146] prognoses in older patients. Longitudi-
nal data may provide a synthesis, delineating that, although
there may be a more severe-onset in older-onset MG, it sub-
sequently is highly responsive to treatment [137].

As to stages of disease, both historical [136, 147, 148]
and more recent cohorts [137, 149] point to an illness
course which is usually at its nadir with most crises in the
first few years; within two to three years in studies includ-
ing pre-twenty-first century presentations [136, 147-149],
whereas after the turn of the century, this severe stage may
be compressed into a single year albeit with most therapeu-
tic benefit achieved in the first two years [137, 149]. These
known disease characteristics should be applied to treatment
principles of newly diagnosed patients in the current era,
especially with the fresh availability and future pipeline
of immunotherapies. Even in modern cohorts, 5-20% of
patients remain refractory after the initial explosive disease
phase and continue to experience exacerbations, and have
a high rate of co-morbidities contributing to hospital stays
[137, 149]. Presence of thymoma, seronegative status, and
co-morbidities may be associated with refractory status
although co-morbidities may be as much a result of drug
regimens as a reason for non-responsive disease [137, 149].
New, digital technology offers the chance of fresh insights
in large cohorts on the longitudinal evolution and burden of

@ Springer

1995-1999 2000-2004 2005-2008

18.3(13.1,25.6) 29.7 (22.8,38.6) 39.8 (30.6, 51.7)

29(1.3,37)  27(13,3.7) 3.1(1.8,5.3)

disease, for example, fatigue, occupational history, quality
of life and caregiver burden [150].

The topic of co-morbidities in all patients and the immu-
notherapy in older people are emerging as hot topics in the
context of changing lifestyles and population demographics.
Co-morbidities are prevalent at similar, high, rates in West-
ern populations [141, 151] and in early- and late-onset myas-
thenia once matched for age [151]. Commonly encountered
co-morbidities include hypertension, high cholesterol, dia-
betes, cataracts, and prostate issues. Multiple co-morbidities
and polypharmacy for co-existing conditions are common
[141, 151]. These co-morbidities need careful management
alongside myasthenia treatment, including immunotherapy.
For example, a Danish case—control study did not identify
increased risk of major osteoporotic fracture among MG
patients on steroid therapy, which was ascribed to adequate
bone protection therapy [152]. Increased treatment-related
side effects, including fatal infection, have been reported
with immunotherapy in older populations [153], but con-
versely poorer outcomes in older people have been linked to
reluctance to initiate more aggressive immunotherapy [142].
A case series of seven LOMG patients aged 55 and above
showed encouraging efficacy and tolerability of Rituximab,
and advocated its potential use earlier in older patients [154].
Gentle maintenance therapy may harbor a preferential side
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effect profile to high-dose induction therapy in this age
group [155].

Conclusion: age and stage are both relevant in myasthenia
management

We close the ‘update’ section of our review with a summary
of the epidemiology and emerging concepts of immunother-
apy in older patients. The advancement of evidence-based
treatment protocols for this group represents one of our
“four hopes for the future’ focusing on improving diagnosis,
prognostication and treatment in the myasthenia community,
which we now briefly outline below.

Hope 1: Progress in laboratory testing
for rapid and more sensitive serological
testing

AChR: from radioimmuno- to cell-based assays
The neurotoxin a-bungarotoxin isolated from a venomous
elapid snake, the Taiwanese many banded krait (Bungarus

multicinctus), was central to the development of AChR
autoantibody assays [156]. It binds the adult and fetal

p o Nl €

Rapsyn-eGFP

B Anti-humanigG x
eff <
Patien "/-‘;H? 2\ ' '

MuSK-eGFP

Fig.6 Cell-based assays in myasthenia gravis. Live cell-based assays
are the most sensitive method to detect antibodies in people with
autoimmune myasthenia gravis. A HEK cells transfected with o-,
B- and 6-AChR subunits with either the € or y subunit for adult or
fetal AChR subunits and eGFP-tagged rapsyn is the substrate for the
clustered AChR antibody assay. The AChR are shown in blue, the
patient antibody in pale blue, the secondary antibody is black with
a fluorochrome depicted in red and Rapsyn-eGFP in green. B HEK

cAChR
Positive

MuSK
Positive

Negative
control

isoforms of the nicotinic acetylcholine receptor with high
affinity (nM to pM) and, when labelled with '%°I, creates a
specific, stable, quantifiable target for radioimmunoprecipi-
tation assays [156]. This assay has been used for decades in
routine immunology diagnostic laboratories.
Enzyme-linked immunosorbent assay (ELISA) tests for
AChR antibody detection generated over the intervening
40 years have not improved on the radioimmunoassay (RIA)
test accuracy. However, a proportion of people with gen-
eralized MG with identical clinical and electromyographic
features to AChR seropositive patients remained AChR anti-
body-seronegative. The resolution of this discordance was an
improved test substrate. Transient transfection of HEK293T
cells with AChR subunits in addition to the AChR clustering
molecule rapsyn provided a test substrate most reflective of
the antibody target in vivo [157]. This clustered AChR cell-
based assay uniquely identified a proportion of ‘seronegative
MG patients’ as seropositive. Here the human AChRs (adult
or fetal) are overexpressed in living cells in the presence
of fluorescent-labelled rapsyn that clusters the AChR into
punctae. Patient sera are incubated with the cells at room
temperature for an hour and AChR-bound antibody is identi-
fied using a fluorescent secondary antibody [157]. In three
head-to-head studies, this live cell-based assay (CBA) iden-
tified 50 new seropositive cases, 18-38% of the patients in

Anti-human IgG

Rapsyn-eGFP Merge

Merge

Anti-human 1gG MuSK-eGFP

Anti-human 1gG Rapsyn-eGFP Merge

cells transfected with MuSK c-terminally tagged with eGFP forms
the substrate for the MuSK live cell-based assay. C Examples of an
AChHR antibody-positive test result in the first row, a MuSK-positive
test result in the second row and a negative control for the AChR anti-
body assay in the bottom row. AChR acetylcholine receptor(s), EGFP
enhanced green fluorescent protein, HEK human embryonic kidney,
IgG immunoglobulin G, MuSK muscle-specific kinase. Figure com-
ponents A and B created with Biorender
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these cohorts, who were defined as antibody seronegative by
RIA [158-160]. This is now considered the gold standard for
the detection of AChR autoantibodies (Fig. 6).

Commercial CBAs generated in a similar fashion to the
live CBA, where the substrate is fixed to allow a longer
shelf-life of the test substrate, are not as accurate as the live
test [164, 165], but the addition of a fluorescence amplifi-
cation step improved the sensitivity of a commercial fixed
CBA from China by 12% over RIA or ELISA [161]. Despite
the improved sensitivity, a small proportion of MG sera
found negative by fixed CBA was positive by RIA (34/1512
(2%) or ELISA (33/1511 (2%)). Similar studies with live
CBAs are needed, but RIA has been superseded by cell-
based assays for the detection of AChR-IgG.

Testing times in MuSK

MuSK antibodies were first identified binding to COS7 cells
transiently transfected with rat MuSK and by ELISA on
purified rat MuSK extracellular domains [162]. A specific,
commercial radioimmunoassay was then developed using
the extracellular domains of either rat or human MuSK [163,
164]. A decade later saw the beginning of in-house and com-
mercial live and fixed CBAs for MuSK antibody detection.

A few head-to-head studies suggest the MuSK RIA,
ELISA and commercial fixed CBA appear equivalent, but
not 100% concordant, with a few missed cases on each test
across studies [165—167]. An in-house fixed CBA appeared
marginally superior to RIA and ELISA in one large study
where 2043 MG patients were screened [161]. But the lack
of concordance between these three test systems remains.
Of 63 MuSK-positive individuals, 47 were concordant, the
in-house fixed CBA identified a further 13 unique positives
while the RIA identified 4 unique samples. In a similar vein,
not all live assays are equivalent. When Hep-2 M4 cells were
stably transduced with human MuSK, only 25/34 RIA-pos-
itive samples were identified as positive [168]. However,
the choice of cell and the method of expression may make a
difference. When the test substrate was HEK cells transiently
transfected with full-length human MuSK in six studies, an
additional 32 MuSK-positive patients were identified [160,
169-172]. There were 136 RIA-positives in these studies.
Hence, a 24% increase in sensitivity for MuSK antibodies. A
lack of controls precludes an examination of test specificity.

The future of laboratory testing in MG

These data show that the initial RIAs for AChR and MuSK
antibody detection have been superseded by live CBAs. Live
CBAs are time-consuming and currently the remit of spe-
cialist laboratories. They require streamlining before being
brought into routine clinical laboratories.

@ Springer

Hope 2: Effective protection of the NMJ

Similar to the concept ‘time is brain’ [173], we propose
here the concept of timely NMJ protection. As illustrated in
Fig. 4, following clinical, laboratory, and, where appropri-
ate, radiological diagnosis of MG, initiation of prompt and
effective treatment is essential to safeguard NMJ function.
This strategy is advanced in the context of renewed attention
to the chronic atrophy and fatty infiltration that may develop
with long-term NMJ pathology [174, 175]. Moreover, it is
likely that there is superadded contribution of age-related
change at the NMJ including denervation, structural degra-
dation, reduced receptor number, distribution and caliber,
[176, 177] of particular consideration in the ageing patient
and in LOMG. Therefore, early and effective treatment is
needed to preserve structural and biochemical NMJ integrity.

In the immediate post-diagnosis period, until long-term
treatment strategy is optimized, IVIG and plasma exchange
may be therapeutic options to fend off refractory, burnt out
disease (Fig. 4 and example case in Box 1). It is possible
that new agents coming on board may also have a role as
‘bridging therapies’ in this context, and investigations into
this indication could be worthwhile [178]. The progression
of chronic disease over decades, and denervation, in the
absence of protective strategems, as captured by historical
pathological reports, heralds irrecoverable muscle atrophy
and neurogenic degeneration, particularly affecting the bul-
bar musculature, which retrospective immune therapy cannot
repair [179]. This is seen clinically and has been historically
evidenced although not investigated with more modern tech-
niques [179].

Hope 3: Fine-tuning our treatment approach
in older populations

We need more knowledge and clinical trials specifically
targeted to studying efficacy and tolerability of immuno-
therapies in older people. Open questions include which
of the many new immunotherapies should optimally be
used, appropriate dosing, and side effects in this age group.
While pilot data have proposed the use of Rituximab in
older people with MG, even suggesting it could have fewer
risks and reduced cost attached compared to conventional
modalities of IVIG and PLEX, it is recognized that more
evidence is needed. [154] It should be noted that increased
rate and severity of infection have been reported in studies
of older (> 75 years) individuals dosed with Rituximab for
rheumatoid arthritis at doses of > 2.5 g/year [180, 181]. This
may also be the case in older people with MS, alongside
co-morbidities and previous severe infection [182]. Studies
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addressing dosing regimens in adults above retirement
age are needed as has been done in vasculitis [155]. In our
center, we have had good experience using very low-dose
Rituximab in older MG patients without an extensive pre-
history of immunotherapies using 500 mg or even 200 mg
single doses and monitoring B cell subsets post-treatment
(M Isabel Leite, personal observations).

Hope 4: The power of T cells: a cure for MG?

CAR T therapy harnesses the power of T cells to eliminate
specific cells expressing epitopes of antigenic targets. The
basic approach is to infuse patients with autologous T cells
which have been bioengineered to bear receptors against a
disease-relevant entity. It is established in hematological
malignancy and considered promising in autoimmune dis-
ease, owing to its capability of precise targeting and penetra-
tion of immune niches [61, 183].

The largest study to date enrolled 14 patients with
eMG (with AChR or MuSK antibodies, one seronegative
individual) who received Descartes-08, active against the
B cell maturation antigen (BCMA) molecule found on
plasma cells [62]. This was an early phase trial, not pow-
ered to examine treatment efficacy. Overall, Descartes-08
was well-tolerated with one serious treatment-related side
effect of urticaria, and promising metrics on disease trajec-
tory. No hypogammaglobulinemia was observed [62]. Two
small-scale clinical reports have reported use of a CD19-
targetted CAR T in refractory Lambert—Eaton Myasthenia
(LEMS), and a single case report in AChR + gMG [184],
with good response [185, 186]. Based on preclinical data
[63], a phase 1 trial of MuSK-specific CAR T (MuSK-
CAART) is currently recruiting (NCT05451212), repre-
senting a further precision medicine step. CAR T methods
are likely to expand in the coming years, but open ques-
tions include cost, and potential emergence of side effects
when used at scale.

Postscript: Can we predict an aggressive
or treatment-responsive disease course?

Of direct relevance when considering high-impact, but
also high-effort and high-cost approaches such as CAR
T, it would naturally be of high clinical relevance and
utility to be able to predict, in advance, which patients
will develop aggressive disease and be able to achieve a
precision selection of rational, individually tailored thera-
pies. Although in their infancy, many exploratory biologi-
cal biomarkers (Table 2) await translation into clinically

relevant tools. Another promising and potentially highly
responsive avenue is the use of data acquired via patient
smartphones [100]. A pilot study recently was able to
quantify degree of ptosis via patient smartphone ‘selfies’
[187]. Rather than single entities, it is probable that a com-
bination of informative biomarkers could be harnessed for
prognostication as was recently demonstrated in another
neurological disease, multiple sclerosis [188]. Machine
learning approaches are entering into the MG space [189]
and, although currently in their infancy, could yield appli-
cable predictive algorithms in future.

Box 1: An illustrative case of AChR-positive
gMG, in which chronic IVIG achieved
neuromuscular junction protection

until the availability of more definitive
therapy.

Patient: Female, 53 years old

e Onset age: 25; thymectomy at 28 (hyperplasia)

e Incomplete response to prolonged and ongoing steroid therapy,
and several immunosuppressive agents tried sequentially over the
years

o Significant side effects of steroid therapy, including weight gain,
early osteoporosis,

e carly cataracts and skin changes

e On chronic monthly IVIG for more than 20 years (until 2021)

e Dependent on suboptimal response to long-term IVIG, in addition
to ongoing steroid therapy. Unable to work

e Since going onto treatment with a complement inhibitor (2021),
the patient has improved progressively and regained sustained
muscle strength

o Has no clinical manifestations of MG for 3 years and is off other
MG treatments for 2 years. Returned to normal life, travelling,
busy with family activities and plans to re-start working
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